Annihilating Fields of Standard Modules of $\mathfrak {sl}(2, \mathbb {C})^\sim $ and Combinatorial Identities
Author | : Arne Meurman |
Publisher | : American Mathematical Soc. |
Total Pages | : 105 |
Release | : 1999 |
ISBN-10 | : 9780821809235 |
ISBN-13 | : 0821809237 |
Rating | : 4/5 (35 Downloads) |
Book excerpt: In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $\tilde{\frak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $\tilde{\frak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $\tilde{\frak g}$-module--the set of relations that defines standard modules. In the case when $\tilde{\frak g}$ is of type $A{(1)} 1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.