Positivity in Algebraic Geometry I
Author | : R.K. Lazarsfeld |
Publisher | : Springer Science & Business Media |
Total Pages | : 414 |
Release | : 2004-08-24 |
ISBN-10 | : 3540225331 |
ISBN-13 | : 9783540225331 |
Rating | : 4/5 (31 Downloads) |
Book excerpt: This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.